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The quantity a2X(a; Ah) is a monotonic increasing function of a and attains its
minimum value at a = 0. Therefore, if we let

A(z) = limit 2 (40)
a- 0 a2X(a; A)

the minimum field strength, Hmin, required to stabilize the Wdverse flow,

Q = £l[1-(1-p)fl, andyu < 1, (41)
is given by

mmr = A(y) [2U12 (1 -a) Red]. (42)
4irp

10. A further fact may be noted. If Q = constant, the characteristic values of
a ( = p + mg) can be determined readily in terms of the corresponding charac-
teristic values,5 ao, when H = 0. Thus

0f = 2 [°0 4 V/(ao2 + 4Q2A2)]. (43)
2
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An earlier note' contains the initial stages in an evolution of the mathematical
structure of quantum mechanics as the symbolic expression of the laws of micro-
scopic measurement. The development is continued here. The entire discussion
remains restricted to the realm of quantum statics which, in its lack of explicit
reference to time, is concerned either with idealized systems such that all properties
are unchanged in time or with measurements performed at a common time.
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The uncontrollable disturbance attendant upon a measurement implies that the
act of measurement is indivisible. That is to say, any attempt to trace the history
of a system during a measurement process usually changes the nature of the meas-
urement that is being performed. Hence to conceive of a given selective measure-
ment M(a', b') as a compound measurement is without physical implication. It is
only of significance that the first stage selects systems in the state b', and that the
last one produces them in the state a'; the interposed states are without meaning
for the measurement as a whole. Indeed, we can even invent a nonphysical state
to serve as the intermediary. We shall call this mental construct the null state 0,
and write

M(a', b') = M(a', 0)2M1(0, b') (1)

The measurement process that selects a system in the state b' and produces it in the
null state,

M(0, b') = 4D(b%
con be described as the annihilation of a system in the state b'; and the production
of a system in the state a' following its selection from the null state

M(a', 0) = (a'),
can be characterized as the creation of a system in the state a'. Thus the content
of (1) is the indiscernibility of M(a', b') from the compound process of the anni-
hilation of a system in the state b' followed by the creation of a system in the state a',

M(a', b') = 'F(a')iD(b'). (2)

The extension of the measurement algebra to include the null state supplies the
properties of the T and D symbols. Thus

T(a')t = -1(a'), -(b')t= T(b')

and

T(a')T(b') = 4(a')>(b') = 0, M(a', b')I(c') = 'I(a')M(b', c') = 0, (3)

whereas

M(a', b') T(c') = <b' Ic' > TI(a'), c1(a')M(b', c') = <a' |b' > 4(c'), (4)

and

(a') (b') = <a' Ib' > 11(0).

The fundamental arbitrariness of measurement symbols expressed by the substi-
tution

M (a', b') ---
i'°(a') M (a', b')e',(b') (5)

implies the accompanying substitution

'(a) -* eip(a') 'J'(a'), 4(b') -* ei<(b') 4(b'), (6)

in which we have effectively removed p(0) by expressing all other phases relative
to it.
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The characteristics of the measurement operators M(a', 6') can now be derived
from those of the I and (D symbols. Thus

M(a', b')t = 4D(b')t(a')t = T(b')4.(a') = M(b', a'),

and

tr M(b', a') = tr c(a')TI(b') = < a' Ib' >,

while

M(a', b')M(c', d') -M(a', b') *I(c')4.(d') =
<b' Ic' > TI(a') 1 (d') = <b' Ic'> M(a', d').

In addition, the substitution (6) transforms the measurement operators in accord-
ance with (5).
The various equivalent statements contained in (3) show that the only signifi-

cant products-those not identically zero-are of the form Ad(4, bM, and XNI, (DX,
in addition to X Y. where the latin symbols are operators, elements of the physical
measurement algebra. According to the measurement operator construction (2),
all operators are linear combinations of products AdP,

X = Z,Ii(a') < a'IXfb' >4(b')
a'b'

and the evaluation of the products XI, tX, and X Y reduces to the ones contained
in (4),

*(a')((b')=(c')=T(a') < b'VC' >,
4(a') T(b') ci(c') = < a' Ib' > '1(c').

Hence, in any manipulation of operators leading to a product CM', the latter is ef-
fectively equal to a number,

P(a')F(b') = < a' b' >,

and in particular

4(a')'(a') = 5(a', a'). (7)

It should also be observed that, in any application of 1 as an operator we have, in
effect

1 = EM(a') = 2T(a')D(a').
a' a'

Accordingly,

X = 'i (a')D(a')X'(b')4(b'),
a'b

which shows that

4'(a') XN1(b') = < a' IX b' >.
The bracket symbols

<a' I= c(a'), Ib' > = TI(b')
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are designed to make this result an automatic consequence of the notation (Dirac).
In the bracket notation various theorems, such as the law of matrix multiplication,
or the general formula for change of matrix representation, appear as simple appli-
cations of the expression for the unit operator

1 = S a'> < a't.
a/

We have associated a ' and a 4D symbol with each of the N physical states of a
description. Now the symbols of one description are linearly related to those of
another description,

(b') = ET(a')-c(a')I(b') = ZT(a') < a' Ib' >, (8)
a' a'

and

c1(a') = i< a' jb' > 4(b'), (9)

which also implies the linear relation between measurement operators of various
types. Arbitrary numerical multiples of T or 4D symbols thus form the elements
of two mutually adjoint algebras of dimensionality N, which are vector algebras
since there is no significant multiplication of elements within each algebra. We are
thereby presented with an N-dimensional geometry-the geometry of states-
from which the measurement algebra can be derived, with its properties character-
ized in geometrical language. This geometry is metrical since the number bM' de-
fines a scalar product. According to (7), the vectors -t(a') and I(a') of the a-
description provide an orthonormal vector basis or coordinate system, and thus
the vector transformation equations (8) and (9) describe a change in coordinate
system. The product of an operator with a vector expresses a mapping upon
another vector in the same space,

XT(b') = 'T(a')4)(a')XT(b') = ZT(a') < a' IX lb' >,
a' a'

4D(a')X = <a' X lb'> cI(b').

The effect on the vectors of the a-coordinate system of the operator symbolizing
property A,

A =
is givuen by

A*(a') = a'T(a'), cI(a')A = D(a')a',
which characterizes I(a') and 4'(a') as the right and left eigenvectors, respectively,
of the complete set of commuting operators A, with the eigenvalues a'. Associated
with each vector algebra there is a dual algebra in which all numbers are replaced
by their complex conjugates.
The eigenvectors of a given description provide a basis for the representation of

an arbitrary vector by N numbers. The abstract properties of vectors are realized
by these sets of numbers, which are kownn as wave functions. We write

E la'><a' 'T
= a' > *(a').

a



VOL. 46, 1960 PHYSICS: J. SCHWINGER 261

and
¢=p (a') <aa'

a'

q5(a') =D a' >
If t and ' are in adjoint relation, cJ = 4t, the corresponding wave functions are
connected by

+(a') = (a')*
The scalar product of two vectors is

D1 2 Z a' > <a' 142
a'

= EZ(a') IP2(a')
a'

and, in particular,
t*= >(a')*#(at). 0

at

which characterizes the geometry of states as a unitary geometry. The operator
I1cI)2 is represented by the matrix

<a' 1w*42 Jb' > = (b
and wave functions that represent XT and (DX are

<a' jXT = E <a' IX Ib' > #p(b')
and

DX lb' > = E (a') < a' IX b' >.
a'

On placing X = 1, we obtain the relation between the wave functions of a given
vector in two different representations,

= <<a' b' > IP(b')
001) E O(a/) <a' lb' >.

a

From the viewpoint of the extended measurement algebra, 4b and ,6 wave functions
are matrices with but a single row, or column, respectively.

It is convenient fiction to assert that every Hermitian operator symbolizes a
physical quantity, and that every unit vector symbolizes a state. Then the ex-
pectation value of property X in the state ' is given by

X>~ = *tX = Z jP(a')*<a' X la" > qt(a').
a'a#

In particular, the probability of observing the values a' in an A-measurement per-
formed on systems in the state 'E is

p(a', I) = <M(a') >w = t la'> < a' = #j(a') 12.
The geometry of states provides the elements of the measurement algebra with

the geometrical interpretation of operators on a vector space. But operators con-
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sidered in themselves also form a vector space, for the totality of operators is closed
under addition and under multiplication by numbers. The dimensionality of this
operator space is N2 according to the number of linearly independent measurement
symbols of any given type. A unitary scalar product is defined in the operator
space by the number

<X Y> = tr(XtY) _ <YtIXt>
which has the properties

<x Y>* = <Y X
<x Ix> > o.

The trace evaluation

tr M(b', a')MI(a", b") = 6(a', a")b(b', b")

characterizes the M(W', b') basis as orthonormal.

<M(a', b') |M(a", b") > = S(u'b', a'b"),

and the general linear relation between measurement symbols,

M(c', d') = E<a' c'><d' b'> M(a', b'),
a'b'

can now be viewed as the transformation connecting two orthonormal bases. This
change of basis is described by the transformation function

<a'b' c'd'> = <M(a'b') M(c', d') = <a' |c'> <d' |b'>,

which is such that

<a'b' c'd'> = <d'c b'a'>.

and

<a'b' c'd'>* = <c'd' la'b'>
= <b'a' Id'c'>.

One can also verify the composition property of transformation functions,

A, <olb' |c'd'> <c'd' e'f> = <a'b' e'f'>.
c'd'

The probability relating two states appears as a particular type of operator space
transformation function,

p(a', b') = <a' b'> <b' a'>
= <a'a' Ib'b'>.

Let X (a), a = 1 . . N2, be the elements of an arbitrary orthonormal basis,

<X(a) JX(a')> =-(a, a').

The connection with the M(a', b') basis is described by the transformation function

<a'b' aa> = tr M(b', a')X ca)

= <a'IX(a) Ib'>.
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We also have
<ala'b'> = <ab' Ia>*

= <b' IX(a)t la'>
and the transformation function property

E <a'b' Ia> <a la'bb> = 6(a'b', aWb")

acquires the matrix form

i, <a' IX(a) lb'> <b' IX(a)t Jaw > = 5(a', a`)a5b', by).

If we multiply the latter by the b-matrix of an arbitrary operator Y, the summation
with respect to b' and b' yields the a-matrix representation of the operator equation

E X(a)YX(a)t= 1 tr Y,
a

the validity of which for arbitrary Y is equivalent to the completeness of the oper-
ator basis X(a). Since the operator set X(a)t also forms an ortbonormal basis
we must have

EZX(a)tYX(a) = 1 tr Y,

and the particular choice Y = 1/N gives

1
OXa()X(a)t = - EX (a)It X (a) = 1.

The expression of an arbitrary operator relative to the orthonormal basis X (a),

X = E X(a)x(a),
a

defines the components

x(a) = <X(a) IX> t<aIX>
For the basis M(a', b'), the components are

x(a'b') = tr M(b', a')X
= <a/ X lb>,

the elements of the ab-matrix representation of X. The scalar product in operator
space is evaluated as

<X IY> = Ex(a)*y(a)
a

and

<x Ix> = E Ix(a) 12 > O.

On altering the basis the components of a given operator change in accordance with

X(a) = E <a 1 laX(fm)i

For measurement symbol bases this becomes the law of matrix transformation.
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There are two aspects of the operator space that have no counterpart in the
state spaces-the adjoint operation and the multiplication of elements are defined
in the same space. Thus

X(a) = E (a3)X(3)t
(a#3) (ha) = tr X(a) X (),

and

X(a)X (A) = E (af3y)X ()t
-y

- X(,y) <y la# >
where

(ai y) = (do a) = (-yaf)
- tr X (a)X (,)X (y)

and

<yla/> = trX(y)tX (a)X( 3).
Some consequences are

<a IX>* = Z (a4) < A lXt>

<-IXY> = E <y af> <aIX> <3IY>,
which generalize the adjoint and multiplication properties of matrices. The ele-
ments of the operator space appear in the dual role of operator and operand on de-
fining matrices by

<a jX la"> = <a XX(a")>
- Z <a Ia'a"> <a'IX>.

a'

The measurement symbol bases are distinguished in this context by the complete
reducibility of such matrices, in the sense of

<a'b' |X Ia"b" > = <a' IX la"> 6(b', b").
Otherwise expressed, the set of N measurement symbols M(a', b'), for fixed b', or
fixed a', are left and right ideals, respectively, of the operator space.
The possibility of introducing Hermitian orthonormal operator bases is illustrated

by the set

2-l/2[M(a', a") + M(a", a')]
a' $ a":

2 i [M(a', a") -M(a', a')] M(a')

For any such basis

<a a,'> = (aCa') = 6(a, a')
and

<a IX>* = <a lXt>,
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which implies that a Hermitian operator X has real components relative to a
Hermitian basis, and therefore

<XiX> = X(a)2 >0.

Thus the subspace of Hermitian operators is governed by Euclidean geometry, and
a change of basis is a real orthogonal transformation,

X(a) = E (a,3)X(fl).

When the unit operator (multiplied by N- 1/2) is chosen as a member of such bases
it defines an invariant subspace, and the freedom of orthogonal transformation
refers to the N2 - 1 basis operators of zero trace.

Important examples of orthonormal operator bases are obtained through the
study of unitary operators.

1 Schwinger, J., these PROCEEDINGS, 45, 1542 (1959).


